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Let S: [0, l]--* [0, 1] be a piecewise convex transformation satisfying some 
conditions which guarantee the existence of an absolutely continuous invariant 
probability measure. We prove the convergence of a class of Markov finite 
approximations for computing the invariant measure, using a compactness 
argument for Lt-spaces. 
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1. I N T R O D U C T I O N  

Exploring statistical properties of dynamical systems was originally 
motivated by the examination of the Boltzmann ergodic hypothesis in 
statistical physics, and this led to the investigation of measure-preserving 
transformations. 13"171 In physical sciences, many problems are closely 
related to the existence and computation of the density of an absolutely 
continuous invariant measure for nonsingular transformations on measure 
spaces.~ io) For example, in neural networks, condensed matter physics, tur- 
bulence in fluid flow, arrays of Josephson junctions, large-scale laser arrays, 
reaction-diffusion systems, etc., "coupled map lattaces" appear as models 
for phase transitions, in which the evolution and convergence of densities 
under the action of the so-called Frobenius-Perron operator are examined. 
Thus, from the physical point of view, the computation of the invariant 
density is very important. 

The study of one-dimensional dynamics constitutes a basis for studying 
general dynamical systems. ~14~ For one-dimensional mappings which are 
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piecewise C 2 and stretching or piecewise C 2 and convex with a strong 
repellor, the existence of an invariant probability measure which is 
absolutely continuous with respect to the Lebesgue measure has been 
proved by Lasota and Yorke, t~L]2~ 

For the computation of one-dimensional absolutely continuous 
invariant measures for the class of piecewise C 2 and stretching mappings 
of [0, 1], Li tl3~ proved the convergence of Ulam's piecewise constant 
approximation method, c~6J Some higher order methods have been 
developed in refs. 1, 5, 6, and 9. A unified approach was proposed in ref. 4. 
Error estimates of these methods were obtained in refs. 2, 4, and 8. 

Recently the convergence of Ulam's method was proved for the class 
of piecewise convex mappings with a strong repellor by Miller. (15) A key 
point in his proof is a simple observation that Ulam's piecewise constant 
approximations of a decreasing function are decreasing functions. In this 
paper, we explore some new properties of higher order Markov finite 
approximations and establish their convergence after we show that such 
approximations also preserve the monotonicity of the function, using the 
fact that any subset of monotonic functions in L~(0, 1 ) that is uniformly 
bounded in L~-norm must be precompact in L~(0, 1). 

After giving some preliminaries in the next section, we prove the 
convergence of the first-order Markov finite approximation method in Sec- 
tion 3. Section 4 is devoted to the convergence of the second-order method. 
Some numerical results are given in Section 5. We conclude in Section 6. 

2. PIECEWISE CONVEX T R A N S F O R M A T I O N S  

Let S: [0, 1] ~ [0, 1] be a measurable transformation such that 
m(A) = 0 implies m(S-~(A)) = 0 for every Lebesgue measurable subset of 
[0, 1 ], where m denotes the Lebesgue measure. The operator P: L~(O, 1) --* 
Ll(O, 1) defined by 

IaPf d, n=Is_,lA f dm (1) 

for every measurable A c [0, 1 ] is called the Frobenius-Perron operator 
associated with S. It is well known I'~ that for f>~O and I[fll--- 
I~o I f l  dm = 1, the absolutely continuous probability measure 

t "  
Ix(A) = JA f dm V measurable sets A c [0, 1 ] 

is invariant under S if and only if f is a fixed point of P, i.e., Pf=f. We call 
f the density of IX. 
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A basic and simple property of P which is useful in this paper is given 
below without proof. For more detailed discussion of P, see ref. 10. 

P r o p o s i t i o n  2.1. P is a Markov operator. That is, Pf>~O and 
IIPf II = IIfll iff~>0. 

Now we state the existence theorem for a class of mappings that are 
piecewise convex with a strong repellor, the proof of which is referred to 
ref. 10 or 12. 

T h e o r e m  2.1. Let S: [0, 1]--, [0, 1] satisfy the following condi- 
tions: 

(i) There is a partition 0 = a o < a ~  < -.. < a t =  I of [0, 1] such that 
Sit,,,_,.,,) is of C 2 for each i =  1,..., r. 

(ii) S'(x) > 0  and S"(x) >10 for all x e  [0, 1), where S'(a3 and S"(a3 
are right derivatives. 

(iii) S(a~) = 0  for each integer i =  1 ..... r. 

(iv) S'(0) > 1. 

Then there exists a unique absolutely continuous invariant probability 
measure with density f* .  Moreover, f *  is a decreasing function, and {P"} 
is asymptotically stable in the sense that lim . . . .  P"f=f* for every density 
f ~  L](0, 1). 

R e m a r k  2.1. The point x = 0  is called a strong repellor since the 
trajectory {S(xo), S2(xo),...}, starting from a point x0E [0, al), will even- 
tually leave [0, al). This property is essential in the proof of asymptotic 
stability of {P"}. 

R e m a r k  2.2. It was shown in ref. 10, Theorem 6.3.1, that for the 
piecewise convex transformation S with a strong repellor, the Frobenius- 
Perron operator P leaves the set of nonnegative decreasing functions 
invariant, and for any decreasing density f s  L~(0, 1), 

Pf(x) ~< l f (0)  + K (2) 

where 2 = S'(O) > 1 and K =  Z~=z 1/(ai_ 1 S t ( a i  - l))- Thus, we have 

2K 
P'~(x) ~f(O) + 2 - 1' Vn 

which guarantees the existence o f f* .  
Since P is an infinite-dimensional Markov operator, it is natural to 

construct its finite approximations, which are also Markov operators. 
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Ulam's original piecewise constant method preserves the Markov property 
of P. Moreover, it preserves the monotonicity property of functions, which 
leads to the convergence of Ulam's method for piecewise convex transfor- 
mations with a strong repellorJ ~5~ In the following two sections, we show 
that higher order Markov approximation methods that were developed in 
ref. 5 for piecewise stretching mappings also preserve the monotonicity of 
functions. The basic idea in the proof is that any convex combination of 
several real numbers is between the minimal one and the maximal one. 
With the help of the inequality (2), we can prove that these methods 
converge with a higher convergence rate. 

3. THE FIRST-ORDER MARKOV FINITE APPROXIMATION 

In next two sections we consider a class of finite approximations of P 
which are Markov operators of finite dimensions. Ulam's piecewise con- 
stant approximations are Markov finite approximations in the above sense 
as well as a projection method. But a higher order projection method 16) is 
not a Markov approximation. Here we analyze the convergence of the 
piecewise linear Markov approximation scheme for computing the fixed 
point of P when S is piecewise convex with a strong repellor. 

Divide the interval [0, 1 ] into n equal subintervals I;-- [xi_ ~, x;] with 
the length h =  1/n. Then the corresponding continuous piecewise-linear 
finite element space T, is (n + 1 )-dimensional. Its standard basis consists of 
the tent functions 

where 

X - - X  i 
i = 0 ,  1,..., n 

e ( x ) = ( 1 - - [ x ] ) x [ _ u l ] ( x ) ,  - - o v < x < ~  

Here XA represents the characteristic function of A. This basis has the 
property that f = Z T = o f i e  i if and only i f f ( x i ) = f i  for all i. In particular, 

• ei(x)-l,  xe[O,  1] 
i = O  

Note that the support of e i is I iuI i+~ for i-- 1, 2,..., n -  1, and those of eo 
and e,, are I~ a n d / , ,  respectively. In the following, denote 
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which is the average value o f f  over the i th  subinterval I~. Now define 

n - -  I 

Q, , f= f ,  eo+ ~. f i+ f ,+ ,  ~ e ,+f , , e , ,  (3) 
i = l  

It was proved in ref. 5 that Q,,: L ' (0 ,  1 ) --+ L ~(0, 1 ) is a Markov  opera tor  of 
finite rank, lim . . . .  Q , f = f  strongly for all feLl(O,  1), and V~ Q,,f<~ 
Volf  It is also easy to see that  I lQ,,f l l~ ~< II / [ l~ for allfEL'~-'(0, 1). F rom 
Remark2.2 ,  the F roben ius -Pe r ron  opera tor  P corresponding to the 
piecewise convex t ransformat ion S maps the set of  nonnegat ive decreasing 
functions into itself. The following result indicates that  Q, has the same 
property.  

Lemma 3.1. Iffe Ll(0, 1) is decreasing, then Q,,fis also decreasing. 

Proof. Let 0 ~< x ~< y ~< 1 and x ~ Ii for some i = 1, 2 ..... 11. First sup- 
pose 1 < i < n and y ~ I;. Then 

Q,,f(x) - f ' - '  s ei_, (x) + f" + fi+, el(x) 
2 2 

f , ._  +f,- f ,  + s 
Q,,f(y) = ] e~_ l (y)  + ~ ' + ~  e,(y) 

2 2 

Since f is decreasing, f~_]~>f, .+l .  Not ing  that e i_ l (X)=l -e i ( x )> .  
ei_,(y) = 1 -e i (y ) ,  we have 

Q,,(x)-Q,,(y) 

f , . _ , + f ,  
2 

- -  [ei_i(x)--ei_,(y)]  + - -  
f , + f , + l  

[ei(x) - ei(y)] 

f , . - ,  + f ,  L + f , + ,  
[ e , _ ] ( x ) - e , _ , ( y ) ]  2 - -  [ e l _  m(X) - e l _  |(y)] 

_ f , - ; -  f,+ l {e i_ , ( x ) -e i_ l (y ) ]  >10 
2 

The case i = 1 or i =  n can be proved similarly. Now suppose y E I / w i t h  
1 < i < j < n .  Then  

f j  1 J r ' f i e  ( x. } ...]_ fJ -[- fJ  + 1 ej(~t.) 
Q"f(Y) = --2 J-  "" 2 
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Since f is decreasing, we have 

f,_, >_-fj 

From ei_~(x)+e~(x)= 1 and ej_l(y) +ej(y)= 1, 

Q,f(x) =(1 -e,(x)) fi_j + ei(x) fi>/ fi>~ fj_l 

( l  - -  e j ( y ) ) f j _  1 -k- ej(y)fj = Q . f ( y )  

By the same argument, one can prove the same result in the case i = 1 or 
j = n .  | 

Let P,, be the restriction of Q,P on the finite element space 7",,. Then 
P,, is a Markov operator of finite rank, and lim . . . .  P,,f= Pf strongly for 
any f e  L~(0, 1). The representation of P,  under any density function basis 
of 7",, is given by an ( n + l ) x ( n +  1) stochastic matrix. From the 
Frobenius-Perron theory of nonnegative matrices, there is a fixed density 
f ,  of P,, in T,, (see also ref. 5 for a proof). The following lemma shows that 
.s can actually be taken to be decreasing. 

Lemma 3.2. P,,: T,,~T,, has a continuous piecewise-linear fixed 
density function f ,  ~ D,, where 

D,, = { f e  T,, [f~> O, II f II = 1, f is decreasing} 

Proof. Since both Q,, and P keep the set of decreasing nonnegative 
functions invariant, so does P,,. Thus P,, maps D,, into itself, since 
]lP,,f ]l = ][ f ][ forf~> 0. It is easy to see that D,, is a compact convex subset 
of T,,. So the assertion follows from the Brouwer fixed-point theorem. II 

Now we can prove the convergence of the piecewise linear Markov 
approximation method. 

Theorem 3.1. Suppose S: [0, 1 ] --, [0, 1 ] satisfies the conditions of 
Theorem 2.1. Let f,, ~ D,, be a sequence of continuous decreasing piecewise- 
linear fixed density functions of P,. Then f,, converge to the unique fixed 
density f *  of P in Ll(0, 1). 

Proof. First we show that the sequence of nonnegative numbers f,,(0) 
is bounded above. In fact, from (2), we have for x e  [0, 1] 

O<~f,,(x)=P,f,,(x)=Q,,Pf,,(x)<~ max Pf,,(x)<~f,,(O)+K 
xE[0,1]  
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In particular, 

1 
f,,(O) <~ ~ f,,(O) + K 

Since 2 > 1, 

2K 
f,,(O) < ). _-----~, v ,  

Since f,, is nonnegative and decreasing, it follows that 

I 2K 
V f , , - -  f,,(0) - f , , (  1 ) ~< f,,(0) ~< 2 - ~ '  
0 

Vn 

By Helly's theorem, {f,,} is precompact in LI(0, 1 ). Suppose limk_ ~f,'k = g  
for some subsequence {nk} of positive integers. Then from 

Ileg-gll ~ IIg-f,,kll + II f,,,.-e,kf,,~.ll 

-4-lie,,kf,,k--e,,,.gl[ + IIP,,.g--egll 

~< IIg--f,,kll + II f,,,.--gll + IIe,,,g--eg[I ~ 0  

we have P g = g = f * .  Hence lira . . . .  f , , = f * ,  since all convergent sub- 
sequences off,,  converge to f* .  I 

R e m a r k  3.1. It can be shown (see, e.g., ref. 2, 8, or 15) that for n 
sufficiently large, P,, has a unique fixed density in T,,. Thus any sequence 
of fixed densities of P,, in T,, converges to f* .  

4. THE  S E C O N D - O R D E R  M A R K O V  FINITE A P P R O X I M A T I O N  

In this section we prove the convergence of the second-order Markov 
finite approximation method for computing the absolutely continuous 
invariant proba, bility measure under a piecewise convex mapping with a 
strong repellor. 

Divide the interval [0, 1 ] into 17 equal parts Ii = [ x , .  i, xi] with the 
length h =  1/11 as before. Then the corresponding continuous piecewise 
quadratic finite element space T, is (2n + 1)-dimensional. Its standard basis 
consists of B-spline functions 

e2Ax)=u \ h J i = 0 ,  1,..., n 
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and 

where 

it X - -  X iX~ 
i =  1, 2,..., n 

U(X)=(IXI--1)2XC_I.13(X), --o9 <X<C~ 

V(X) =2X(1 --X)Zto, I1(X), - -m  < X <  

This basis has the property that 

211 

Y' ek(x)=  1, x e [ 0 ,  1] 
k=o 

Notice that the support of e2i is I; w I;+~ for i = 1, 2 ..... n -  1, that of e2s_ 
is I; for i =  1, 2,..., n, and that of eo and e2,, is I t and /,,, respectively. As 
usual, let .s  - I I i ,  f d m  be the average value of f over/ ' i .  Now define 

nl 

"- '  fs+ f,+l e2i+ ~ fse-,i-i + f,,e2,, (4) Q, , f=f leo+ ~_, 
/ = 1  i = l  

Then the sequence of second-order Markov approximations Q,,f strongly 
converges to f for any f e L l ( 0 ,  1). Is~ Obviously IIQ,,fll~ ~< Ilfll~ for all 
feL':~(O, 1). 

L o m m a  4.1. I f f eL~(0 ,  1) is decreasing, then so is Q,,f 

Proof. Let O<<.x<~y<~ 1 and .x-si s . First suppose yel~ with I < i < n .  
Then 

Q,,f(x) f i - i  + fi  2 e2' i - l~(x)+fse2i- j(x)+fi+fi+l  e2i(x) 
2 

Q,,f(y) f , - i  +f ,  e2,,_ ,,(3') + fiezi-t(Y) + f s + f s +  l ~ e z i ( Y )  

Since f is decreasing, f s - i  ~> fs >~ f ,+ I. With e~t i_ i)(x) >1 e2ti_ II(Y), e2i(x) <~ 
e,_i(y), e?.i_l(x)= 1 -e2u_l~(x)-e2i(x),  and e2i_l(y)= 1 -e~_ , - l l (Y) -  
e2i(y), we have 

Q,,(x)- Q,,(y) 

fs -  +fs [e,o_ ._ l~(x) 
- -  2 - -  e 2 ( i -  11( Y ) ]  + f s [ e z i - l ( x ) - - e 2 i - l ( ) ' ) ]  

+ f , + f , + l  
[ e2;(x) - e2i(y)] 
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f,._ -+-~. [ e2ci_ t�91 ) -- 2 - -e21i- ,~(Y)]  - - f i [ e 2 , i _ , ~ ( x ) - - e 2 . _ , , ( y ) ]  

--f,.[e2i(x) -- e2i(Y)] + f i  + f i+,  [ e2i(x) - e2i(Y)] 
2 

f i - , - - f ,  ,- " " f " - - J ) + '  [ e 2 , ( x ) - - e 2 i ( y )  ] >~0 
- -  2 [ e 2 1 i - t ) t x ) - - e 2 t i - l ) ( Y ) ]  2 

Now suppose y ~Ij  with 1 < i < j < 17. Then 

_ + f J + f J + '  Q, , f ( y )=fJ -2+fJe . , , j _~ , ( y )+f j e - , j_ t ( y )  -}- e2j(y) 

Since f is decreasing, we have 

f i -  ,2 + ~ >~ f i >~ f i + f i+ ' >>" ~ -  2-+ f J >~ f J >~ ~ +-f2 J+ ' 2 

Now from e2t i_ l~(x)+e, , i_ l (x)+e2i(x)=l  and e z t j _ l ~ ( y ) + e z j _ t ( y ) +  
e_j(y) = 1, we obtain 

f, +f,-+ l f .  -4-f, 
Q,,f(x) >1 >1 "" - '  - " "  >1 Q,, f(y)  

2 2 

For all other cases, the proof is similar. I 

Let P , ,=  Q,,P]r,,. Then the Markov operator P,," T , ,~  T,, has a fixed 
density f,,.~51 As in the linear approximation case, f,, can actually be 
decreasing. 

Lemma 4.2. P,,: T,,-~T,, has a continuous piecewise-quadratic 
fixed density function f ,  ~ D,, where 

D, = { f E  T,, I f /> 0, II f II = 1, f is decreasing} 

The convergence of the piecewise quadratic Markov approximation 
method is exactly the same as in the previous section. 

Theorem 4.1. Suppose S: [0, 1] ~ [0, 1] satisfies the conditions of 
Theorem 2.1. Let f,, ~ D,, be a sequence of continuous decreasing piecewise- 
quadratic fixed-density functions of P,,. Then f,, converges to the unique 
fixed density f *  of P in L~(0, 1). 
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5. N U M E R I C A L  RESULTS 

In this section, we present numerical results for computing the 
absolutely continuous invariant measure for the piecewise convex maps 

and 

i x ( x  + 3/2), 
Sl(x) = [ x ( x -  1/2), 

O~<x< 1/2 

1/2 <~x<<. 1 

~'2x, O ~ x <  1/2 
S2(x) = [ ( 2 x -  1 ) / (3-  2x), 1/2<~x<~ I 

Since S 1 and $2 satisfy the condition of the Lasota-Yorke theorem, there 
is a unique absolutely continuous invariant probability measure for them, 
and its density is a decreasing function. Here we use Ulam's piecewise con- 
stant approximation method and our piecewise linear method and 
piecewise quadratic method to compute the invariant density. 

The computation was performed on the Honeywell CP6 mainframe at 
the University of Southern Mississippi. Double precision was used. In the 
algorithm, the interval [0, 1 ] was divided into 12 = 2 k equal subintervals 
with k = 2, 3 ..... 8. The main numerical work in the algorithm is the evalua- 
tion of the matrix t5  of the finite-dimensional Markov operator P,, whose 
entries can be calculated exactly through the integration of basis functions 
on the inverse image of each subinterval under S, and the computation of 
the fixed point - r  of P,,, which was carried with the QR decomposition from 
the LINPACK subroutine dqrdc. Let 0 ~ f, , ,  f , , ,  and f;;  be the piecewise con- 
stant, piecewise linear, and piecewise quadratic approximate fixed densities 
of P, respectively, corresponding to the partition of n = 2 k. For i = 0, 1, 2, 
we used 

P 1 
i _ _  i i l i i . 

= Jo - f , , ( x ) l  dx e,,= l] f2,, - f , , l l  I f2,,(x) 

to estimate the L ' -norm error o f f l  , to approximate the exact fixed density 
f *  of P. 

In Tables I and II the first column is the number of subintervals in the 
partition, and the remaining ones give the corresponding errors for all the 
three methods. The asterisk means that the computation was not actually 
performed due to the storage limit. It is clear from the tables that the con- 
vergence rate is quite consistent with the order of the method. 

In Tables III and IV we list approximate function values of the 
piecewise constant, piecewise linear, and piecewise quadratic approximate 
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Table I. Error Estimates for  S 1 

Errors  
N u m b e r  of  

subintervals Piecewise constant  Piecewise linear Piecewise quadrat ic  

633 

4 1.2926 x 10 - I  1.1913 x 10 - I  1.0608 x 10 - I  
8 9.6430 x 10 -2 6.5875 x 10 -2 5.6216 • 10 -2 

16 4.6338 x 10 -2 3.3130 x 10 -2 2.7132 x 10 -z  
32 2.7626 x 10 -2 1.5246 x 10 -2 1.2027 x 10 -2 
64 1.3738 x 10 -2 6.4226 • 10 -3 4.8539 x 10 -3 

128 6.4897 x 10 -3 2.7829 x 10 -3 2.0069 x 10 -3 
256 3.2951 x 10 -3 1.3837 X 10 -3 * 

Table II. Error Estimates for  S 2 

Errors  
Number  of 

subintervals Piecewise constant  Piecewise linear Piecewise quadrat ic  

4 5.5704 x 10-2 5.4059 x 10 -2 4.3619 • 10-z  
8 3.1276 x 10 -2 2.3451 • 10 -z  1.8437 x 10-2 

16 1.6076 x 10 -2 9.1142 x 10 -3 6.8903 x 10 -3 
32 8.0362 x 10 -3 3.2445 • 10 -3 2.3790 x 10 -3 
64 3.7735 x 10 -3 1.0641 x 10 -3 7.6893 x 10 -4 

128 1.9540 x 10 -3 3.3473 x 10 -4 2.3797 • 10 -4 
256 9.6623 x 10 -4 1.0092 • 10 -4 * 

Table III. Funct ion Values at the Nodes for S 1 

"0 ~t" 16 I ~ 16 { J  ,6(- ,)}  ,= , { f , 6 ( -  ,)}  ,=o { f ,6( - ' , ) }2  x ,=o'6 

2.722, 2.154, 1.758, 1.462, 
1.303, 1.073, 1.008, 0.888, 
0.623, 0.506, 0.486, 0.453, 
0.435, 0.403, 0.366, 0.359 

2.731, 2.443, 1.967, 1.634, 
1.387, 1.199, 1.049, 0.932, 
0.739, 0.571, 0.521, 0.478, 
0.441, 0.409, 0.373, 0.334, 

0.314 

2.753, 2.463, 1.972, 1.628, 
1.380, 1.194, 1.046, 0.927, 
0.734, 0.566, 0.518, 0.475, 
0.439, 0.407, 0.376, 0.339, 

0.316 

"Table IV. Function Values at the Nodes for  S 2 

0 \ .  16  I X" 16 2 . 16  
{f,6(- ,)} i=, {f,~(- i)} ,=o {f,6(-x,)} ,=o 

1.638, 1.526, 1.363, 1.288, 
1.149, 1.085, 1.002, 0.967, 
0.870, 0.843, 0.784, 0.767, 
0.708, 0.693, 0.663, 0.652 

1.662, 1.587, 1.447, 1.325, 
1.218, 1.126, 1.047, 0.978, 
0.918, 0.865, 0.817, 0.774, 
0.736, 0.702, 0.671, 0.643, 

0.629 

1.670, 1.5930, 1.452, 1.326, 
1.218, 1.126, 1.046, 0.977, 
0.916, 0.863, 0.815, 0.773, 
0.734, 0.700, 0.669, 0.641, 

0.627 
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fixed densities corresponding to the partition of [0, 1 ] with n = 16. These 
tables show that all such functions are decreasing, which is guaranteed 
from our theoretical results. 

6. C O N C L U S I O N S  

Using a key inequality in the proof of the existence of the absolutely 
continuous invariant probability measure for a class of piecewise convex 
transformations with a strong repellor and a structure-preserving property 
of a class of Markov finite approximations, we proved the convergence of 
piecewise linear and piecewise quadratic Markov methods. Since the 
Markov approximations also leave the set of increasing functions invariant, 
as is easily seen in the proofs of Lemmas 3.1 and 4.1, for a class of non- 
singuar transformations S where the corresponding Frobenius-Perron 
operators P map increasing densities to increasing ones and satisfy a 
similar inequality to (2), our methods still converge. 
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